DOI [MAA02] W. Maass, T. Natschläger, H. Markram:
Real-time computing without stable states: A new framework for neural computation based on perturbations
Neural Comp. 14, 2531 (2002)
DOI [JAE01] H. Jaeger:
The 'echo state' approach to analysing and training recurrent neural networks
(2001)
DOI [DOC09] K. Dockendorf, I. Park, P. He, J. C. Principe, T. B. DeMarse:
Liquid state machines and cultured cortical networks: The separation property
Biosystems 95, (2009)
DOI [FER03] C. Fernando, S. Sojakka:
Pattern Recognition in a Bucket
in Advances in Artificial Life, ( 2003)
DOI [VAN11c] K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman:
Parallel reservoir computing using optical amplifiers
IEEE Trans. Neural Netw. 22, 1469 (2011)
DOI [VAN14] K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman:
Experimental demonstration of reservoir computing on a silicon photonics chip
Nat. Commun. 5, 3541 (2014)
DOI [APP11] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer:
Information processing using a single dynamical node as complex system
Nat. Commun. 2, 468 (2011)
DOI [LAR12] L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer:
Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing
Opt. Express 20, 3241 (2012)
DOI [BRU13a] D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer:
Parallel photonic information processing at gigabyte per second data rates using transient states
Nat. Commun. 4, 1364 (2013)
DOI [BUE17] J. Bueno, D. Brunner, M. C. Soriano, I. Fischer:
Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback
Opt. Express 25, 2401 (2017)
DOI [ARG18] A. Argyris, J. Bueno, I. Fischer:
Photonic machine learning implementation for signal recovery in optical communications
Sci. Rep. 8, 1 (2018)
DOI [LAR17] L. Larger, A. Bayl\'on-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, M. Jacquot:
High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification
Phys. Rev. X 7, 011015 (2017)
DOI [ROE18a] A. Röhm, K. Lüdge:
Multiplexed networks: reservoir computing with virtual and real nodes
J. Phys. Commun. 2, 085007 (2018)
DOI [APP14] L. Appeltant, G. Van der Sande, J. Danckaert, I. Fischer:
Constructing optimized binary masks for reservoir computing with delay systems
Sci. Rep. 4, 3629 (2014)
DOI [NAK16] J. Nakayama, K. Kanno, A. Uchida:
Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal
Opt. Express 24, 8679 (2016)
DOI [KUR18] Yoma Kuriki, J. Nakayama, K. Takano, A. Uchida:
Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers
Opt. Express 26, 5777 (2018)
DOI [BUE18a] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner:
Reinforcement learning in a large-scale photonic recurrent neural network
Optica 5, 756 (2018)