|
| [MAA02]
|
W. Maass, T. Natschläger, H. Markram: Real-time computing without stable states: A new framework for neural computation based on perturbations Neural Comp. 14, 2531 (2002) |
|
| [JAE01]
|
H. Jaeger: The 'echo state' approach to analysing and training recurrent neural networks (2001) |
|
| [DOC09]
|
K. Dockendorf, I. Park, P. He, J. C. Principe, T. B. DeMarse: Liquid state machines and cultured cortical networks: The separation property Biosystems 95, (2009) |
|
| [FER03]
|
C. Fernando, S. Sojakka: Pattern Recognition in a Bucket in Advances in Artificial Life, ( 2003) |
|
| [VAN11c]
|
K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, P. Bienstman: Parallel reservoir computing using optical amplifiers IEEE Trans. Neural Netw. 22, 1469 (2011) |
|
| [VAN14]
|
K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B. Schrauwen, J. Dambre, P. Bienstman: Experimental demonstration of reservoir computing on a silicon photonics chip Nat. Commun. 5, 3541 (2014) |
|
| [APP11]
|
L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer: Information processing using a single dynamical node as complex system Nat. Commun. 2, 468 (2011) |
|
| [LAR12]
|
L. Larger, M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, I. Fischer: Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing Opt. Express 20, 3241 (2012) |
|
| [BRU13a]
|
D. Brunner, M. C. Soriano, C. R. Mirasso, I. Fischer: Parallel photonic information processing at gigabyte per second data rates using transient states Nat. Commun. 4, 1364 (2013) |
|
| [BUE17]
|
J. Bueno, D. Brunner, M. C. Soriano, I. Fischer: Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback Opt. Express 25, 2401 (2017) |
|
| [ARG18]
|
A. Argyris, J. Bueno, I. Fischer: Photonic machine learning implementation for signal recovery in optical communications Sci. Rep. 8, 1 (2018) |
|
| [LAR17]
|
L. Larger, A. Bayl\'on-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, M. Jacquot: High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architecture: Million Words per Second Classification Phys. Rev. X 7, 011015 (2017) |
|
| [ROE18a]
|
A. Röhm, K. Lüdge: Multiplexed networks: reservoir computing with virtual and real nodes J. Phys. Commun. 2, 085007 (2018) |
|
| [APP14]
|
L. Appeltant, G. Van der Sande, J. Danckaert, I. Fischer: Constructing optimized binary masks for reservoir computing with delay systems Sci. Rep. 4, 3629 (2014) |
|
| [NAK16]
|
J. Nakayama, K. Kanno, A. Uchida: Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal Opt. Express 24, 8679 (2016) |
|
| [KUR18]
|
Yoma Kuriki, J. Nakayama, K. Takano, A. Uchida: Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers Opt. Express 26, 5777 (2018) |
|
| [BUE18a]
|
J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner: Reinforcement learning in a large-scale photonic recurrent neural network Optica 5, 756 (2018) |